What's the Best Buy?

One day you're going to be earning your own money and need to go shopping for food. You'll probably have a set budget for how much you can spend, so understanding how to work out and compare unit rates for different products can save you money in the long run and keep you on budget!

The best buy is not necessarily the cheapest buy. Some things might appear to cost more up front but because they contain more product per unit rate they will last longer. That's what makes them the best buy!

Use a selection of online shopping supermarket websites or other store websites to search for the 14 products listed. Your mission is to find the best buys!

To do this, you'll need to work out the unit rates for either 100 g or 100 ml or the cost of a single item. Write your answers to 2 or 3 decimal places depending on the number you're calculating. Then compare them, work out which product is the best buy and highlight it on your sheet.

Quick Reminder:

100 grams $\times 10=1$ kilogram and 100 millilitres $\times 10=1$ litre
When you're done, add up your total spend and compare with your friends.

Who got the best buys? Whose total was larger or smaller?

You can search for your products in 3 different ways:

1 Choose the

same product brand but different sizes,
200 g us 500 g .

2 Choose the same product size but find a different brand, both products are 500 ml but a different brand.

3 Choose the same product brand and size but from a different supermarket or store.

Here's an example of what yours should look like:

You're buying...	Product I	Product 2	Best Buy!
Tuna	Brand: Fresh Fish Tuna Chunks in Water	Brand: Fresh Fish Tuna Chunks in Water	
	Size: 1859	Size: 425 g	
	Price: $\$ 3.40$	Price: $\$ 6.60$	
	Which supermarket or store? Golden Grocery	Which supermarket or store? Golden Grocery	
	Working Out: $\begin{aligned} & \div \frac{\$ 3.40}{185 \mathrm{~g}}=\frac{\$ 0.018}{1 \mathrm{~g}} \\ & \frac{\$ 0.018}{1 \mathrm{~g}} \times 100=\frac{\$ 1.80}{100 \mathrm{~g}} \end{aligned}$	Working Out: $\begin{aligned} & \div \frac{\$ 6.60}{425 g}=\frac{\$ 0.015}{1 g} \\ & \quad \frac{\$ 0.015}{1 \mathrm{~g}} \times 100=\frac{\$ 1.50}{100 \mathrm{~g}} \end{aligned}$	
	Unit Rate per 100g: $\$ 1.80$	Unit Rate per 100 g : $\$ 1.50$	Best Buy! $\$ 6.60$

You're buying...	Product 1	Product 2	Best Buy!
Peanut Butter Breakfast Cereal Rice Tomato Sauce Biscuits Pasta Cheese	Brand:	Brand:	

You're buying...	Product 1	Product 2	Best Buy!
Peanut Butter Breakfast Cereal Rice Tomato Sauce Biscuits Pasta Cheese	Brand:	Brand:	

You're buying...	Product 1	Product 2	Best Buy!
Peanut Butter Breakfast Cereal Rice Tomato Sauce Biscuits Pasta Cheese	Brand:	Brand:	

You're buying...	Product 1	Product 2	Best Buy!
Peanut Butter Breakfast Cereal Rice Tomato Sauce Biscuits Pasta Cheese	Brand:	Brand:	

You're buying...	Product 1	Product 2	Best Buy!
Peanut Butter Breakfast Cereal Rice Tomato Sauce Biscuits Pasta Cheese	Brand:	Brand:	

You're buying...	Product 1	Product 2	Best Buy!
Peanut Butter Breakfast Cereal Rice	Brand:	Brand:	
Tomato Sauce Biscuits Pasta Cheese	Size:	Size:	
		Price:	

You're buying	Product I	Product 2	Best Buy
Eggs Burger Buns AA Batteries	Brand:	Brand:	
	Size:	Size:	
	Price:	Price:	
	Which supermarket or store?	Which supermarket or store?	
	Working Out:	Working Out:	

You're buying	Product I	Product 2	Best Buy
Eggs Burger Buns AA Batteries	Brand:	Brand:	
	Size:	Size:	
	Price:	Price:	
	Which supermarket or store?	Which supermarket or store?	
	Working Out:	Working Out:	

What's the Best Buy?

Hi there,
This resource is all about maths in the real world! Knowing how to calculate and understand unit rates when you're going grocery shopping is a key life skill and this will give your students plenty of practise at it. You could easily extend this into a home task where they can put their newly learned skills into action with the family shopping.

As well as division and multiplication skills in this resource, there is also consolidation of measurement knowledge, working with decimals to 2 or 3 places plus some addition right at the end. A calculator will likely be necessary for this activity, although you may have some very capable students who thrive on figuring everything out without one. You know your students best in this situation.

Special note: Some of the websites may already have the unit prices listed so you may want to screenshot some different products (minus the unit rates) and print off a sheet that students can use as their reference. If that's in the 'no time to do it' basket, don't panic! Even if students work backwards from the unit rate given on the websites and work out how it was calculated, that's still valuable skill development.

We hope you and your students enjoy using this resource!
Team Twinkl

